

SimPhonics, Inc.
3226 North Falkenburg Road

Tampa, Florida 33619

Voice (877) 205-4901 X102

FAX (813) 623-5119

CAGE: 0L4C8

Email: info@simphonics.com

VComm Signal File

Specification

mailto:info@simphonics.com

VComm Signal File Specification

SimPhonics, Inc.

Page 2 of 9

Table of Contents

1 Preface .. 3

1.1 Trademarks and Copyrights .. 3
1.2 Revision History .. 3
1.3 Before Reading This Document ... 3

2 VComm Signal Files ... 4

3 Format Specification ... 5

3.1 Format Description .. 5
3.1.1 VSF Preamble ... 5
3.1.2 VSF Records ... 5
3.1.2.1 Audio Data Record .. 6
3.1.2.2 Resume Record .. 6
3.1.2.3 Transmitter State Record ... 7

3.2 VSF.h .. 8

List of Tables

Table 1. VSF Record Types .. 6

VComm Signal File Specification

SimPhonics, Inc.

Page 3 of 9

1 Preface

This document defines the VComm Signal File format.

1.1 Trademarks and Copyrights

Any trademarks shown throughout this document are the property of their respective

owners. V+ is a trademark of SimPhonics, Incorporated.

Copyright  2010 SimPhonics, Incorporated. All rights reserved.

1.2 Revision History

Version Revision Date

1.0 Initial Release 2009-08-26

2.0 Add transmission event record 2010-07-28

For more information on this product, go to the following:

http://www.simphonics.com

1.3 Before Reading This Document

A basic understanding of networking principles is important, as well as a good

understanding of the V+ Visual Programming System, VComm, and C++.

http://www.simphonics.com/

VComm Signal File Specification

SimPhonics, Inc.

Page 4 of 9

2 VComm Signal Files

The VComm Signal File (VSF) format was developed by SimPhonics to efficiently store

recordings of radio transmissions. A VComm Signal File is identified with the extension “vsf”

and conforms to the format specification in this document.

VSF files are created by object 2085 – VComm Recorder. Please see the VComm User

Manual and the object help for more information on this object.

VSF files may be converted to standard WAV files using the VSF Converter utility which can

be read by industry software compatible with the .WAV file format.

The utility can also convert VSF files to other formats.

Please see the VComm User Manual for further details on the VSF Converter utility.

VComm Signal File Specification

SimPhonics, Inc.

Page 5 of 9

3 Format Specification

The VSF file format is defined in the VSF.h header file. This header file is maintained by

SimPhonics and is reproduced in section 3.2. Please refer to the header file while reading

this section.

Note that absolute time stamps are stored using the Windows FILETIME structure. A

FILETIME structure contains a 64 bit value representing the number of 100 nanosecond

intervals since January 1, 1601 (UTC).

Note also that Intel byte order is used.

3.1 Format Description

A VSF file is a binary file that starts with a preamble and contains one or more VSF records.

3.1.1 VSF Preamble

Each VSF file starts with a preamble which contains the following fields:

 A 32 bit signature set to 0x46535600: This signature should be checked before

processing a VSF file to verify the integrity of the file.

 A 32 bit version that defines the version of the file format.

 The time when the recording started.

3.1.2 VSF Records

After the preamble, the remainder of the VSF file is made up of VSF records. There are

several types of VSF records but each type starts with the following fields:

 A 32 bit size that contains the total number of bytes in the record including the size

field itself and any variable length data at the end of the record.

 A 32 bit unsigned integer id to specify the type of the record.

 A timestamp that defines the absolute time at which the event represented by the

record occurred.

The types and descriptions of VSF records are listed in Table 1. Some records do not

require any further data (i.e. they simply record the time at which the event occurred).

Others, however, contain additional data which is described in the subsections below.

VComm Signal File Specification

SimPhonics, Inc.

Page 6 of 9

Table 1. VSF Record Types

ID Record Type Description

0 ERROR A record type with id of 0 is an error and should

be ignored.

1 AUDIO DATA UNSUPPORTED This record represents audio data that could not

be processed for some reason. For example, the

encoding of the source audio data might be

unsupported.

2 AUDIO DATA This record represents a chunk of recorded

audio.

3 END This record marks the time at which the

recording was stopped. This should be the last

record in the VSF file.

4 PAUSE This record marks the time at which the

recording was paused.

5 RESUME This record marks the time at which the

recording was resumed.

6 TRANSMITTER STATE This record represents the current state of a

transmitter.

3.1.2.1 Audio Data Record

The Audio Data record contains time stamped recorded audio data. In addition to the initial

common fields, the following fields make up the record:

 The sample rate of the recorded audio data in Hz (e.g. 8000).

 The site number, application number, entity number, and radio number of the radio

that transmitted the audio data.

 A variable number of bytes that represents the recorded audio. The size of the

recorded audio can be inferred from the size of the record. The audio data is stored

in 16 bit stereo PCM.

3.1.2.2 Resume Record

The Resume record defines the absolute time at which recording was resumed. In addition

to the initial common fields, the following fields make up the record:

 A position offset in milliseconds from the start of the recording. A value of zero or

more indicates that, within the context of an exercise or simulation, the recording

was resumed at a different time than when it was paused. A negative value

indicates that the recording resumed from the point at which it was paused.

An example is helpful to understand the use of the position field. Consider a recorded

exercise that runs for an hour and then is paused. If the exercise is rewound to the 10

minute mark and then resumed, the Resume record can store this information with a value

of 600,000 in the position field (600,000 milliseconds = 10 minutes).

VComm Signal File Specification

SimPhonics, Inc.

Page 7 of 9

3.1.2.3 Transmitter State Record

The Transmitter State record contains the time stamped transmission state of a radio. In

addition to the initial common fields, the following fields make up the record:

 The site number, application number, entity number, and radio number of the radio

 The current state of the radio.

The state of the radio is an enumerated value as follows:

 0 – Radio is turned off.

 1 – Radio is turned on but is not transmitting.

 2 – Radio is turned on and is transmitting.

 3 – Radio has been deleted (i.e. the radio has stopped reporting its state)

VComm Signal File Specification

SimPhonics, Inc.

Page 8 of 9

3.2 VSF.h

//

//

// VSF.h - This file defines the VComm Signal File format.

//

// The VComm Signal File Format is used to record incoming radio transmissions

// and associated events and data.

//

//

//

// Copyright © 2010 SimPhonics, Inc. All rights reserved.

// PART NUMBER: (Same as filename)

// ORIGINAL AUTHOR: Richard Fedorowicz, 04/12/09 (Version 1)

// MODS: Richard Fedorowicz, 07/14/10, Add Transmitter State Record (Version 2)

//

//

#pragma once // Include only once

#pragma pack(push, 1) // packing is now 1

#define VSF_SIGNATURE 0x46535600

#define VSF_VERSION 2

#define VSF_MAX_DATA_SIZE 65536 // maximum amount of variable length data in a record

// VSF Preamble - Each VSF file starts with a preamble

typedef struct {

 unsigned __int32 signature; // identifies that this is a VSF file

 unsigned __int32 version; // VSF format version

 FILETIME startTime; // start time of recording

} VSF_PREAMBLE, *LP_VSF_PREAMBLE;

// VSF Records - The preamble is followed by one or more records

typedef enum { VSF_RECORD_TYPE_ERROR = 0,

 VSF_RECORD_TYPE_AUDIO_DATA_UNSUPPORTED,

 VSF_RECORD_TYPE_AUDIO_DATA,

 VSF_RECORD_TYPE_END,

 VSF_RECORD_TYPE_PAUSE,

 VSF_RECORD_TYPE_RESUME,

 VSF_RECORD_TYPE_TRANSMITTER_STATE

} VSF_RECORD_TYPE;

// VSF Record Header

typedef struct {

 unsigned __int32 size; // size of record including data if any

 unsigned __int32 recordType; // type of record

 FILETIME timestamp;

} VSF_RECORD_HEADER, *LP_VSF_RECORD_HEADER;

// VSF Audio Data Record - Recorded radio transmission audio

typedef struct {

 VSF_RECORD_HEADER hdr;

 ULONG sampleRate; // Sample rate of audio

 USHORT site; // Site number of transmitting radio

 USHORT application; // Application number of transmitting radio

 USHORT entity; // Entity number of transmitting radio

 USHORT radio; // Radio number of transmitting radio

 // variable amount of data follows here

} VSF_AUDIO_DATA_RECORD, *LP_VSF_AUDIO_DATA_RECORD;

// VSF End Record - Marks the end of a recording

typedef VSF_RECORD_HEADER VSF_END_RECORD, *LP_VSF_END_RECORD;

// VSF Pause Record - Marks a pause point in a recording

typedef VSF_RECORD_HEADER VSF_PAUSE_RECORD, *LP_VSF_PAUSE_RECORD;

// VSF Resume Record - Marks a resume point in a recording

typedef struct {

 VSF_RECORD_HEADER hdr;

 LONG position; // The offset in milliseconds from the start of the recording

 // where recording resumes. Negative values = append at end

VComm Signal File Specification

SimPhonics, Inc.

Page 9 of 9

} VSF_RESUME_RECORD, *LP_VSF_RESUME_RECORD;

// VSF Transmitter State Record - Reports the current state of the transmitter

typedef struct {

 VSF_RECORD_HEADER hdr;

 USHORT site; // Site number of radio

 USHORT application; // Application number of radio

 USHORT entity; // Entity number of radio

 USHORT radio; // Radio number of radio

 USHORT state; // The state of the radio transmitter

} VSF_TRANSMITTER_STATE_RECORD, *LP_VSF_TRANSMITTER_STATE_RECORD;

// Radio Transmitter States

typedef enum { VSF_TRANSMITTER_STATE_OFF = 0,

 VSF_TRANSMITTER_STATE_ON,

 VSF_TRANSMITTER_STATE_ON_AND_TRANSMITTING,

 VSF_TRANSMITTER_STATE_DELETED

} VSF_TRANSMITTER_STATE;

#pragma pack(pop)

